Hippotherium malpassii (Equidae, Mammalia) from the latest Miocene (late Messinian; MN13) of Monticino gypsum quarry (Brisighella, Emilia-Romagna, Italy)

Lorenzo Rook & Raymond L. Bernor

L. Rook, Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy; lorenzo.rook@unifi.it
R.L. Bernor, College of Medicine, Department of Anatomy, Laboratory of Evolutionary Biology, Howard University, Washington, DC 20059, USA; rbernor@howard.edu

KEY WORDS - Hippotherium, dentition, postcranial skeleton, Messinian, Brisighella, Italy.

ABSTRACT - We describe the Hippotherium record from the latest Miocene (MN13) vertebrate faunal assemblage of the Monticino gypsum quarry (also known as Brisighella). This small sample would appear to be attributable to a single species of hipparionine horse. The referral to the recently described species Hippotherium malpassii Bernor, Kaiser, Nelson & Rook, 2011 would appear to be the best one possible. The Monticino gypsum quarry specimens correspond to the size of Hippotherium malpassii and show a suite of morphological features that allow their specific attribution. Formal description of the Brisighella hipparion specimens augments the previous knowledge of the Monticino gypsum quarry vertebrate fauna, one of the best-known latest Messinian fossil assemblages of continental Europe.

INTRODUCTION

The occurrence of a rich late Messinian fossil vertebrate assemblage in karst sediments associated with the Messinian evaporites in the Monticino gypsum quarry near Brisighella (Emilia-Romagna, Central Italy; Fig. 1) was first reported by Costa et al. (1986). According to local and regional geological constraints (Marabini & Vai, 1989; Vai, 1989), the vertebrate assemblage is correlated with the late Messinian Stage and European Land Mammal Age (ELMA) MN13. The vertebrate fauna has been the subject of a number of descriptive papers (De Giuli et al., 1988; De Giuli, 1989; Kotsakis, 1989; Kotsakis & Masini, 1989; Masini, 1989; Masini & Thomas, 1989; Torre, 1989; Rook et al., 1991; Rook, 1992; Masini & Rook, 1993; Rook & Masini, 1994; Delfino, 2002; Rook, 2009; Gallai & Rook, 2011).

Soon after the 1985 discovery of the paleontological site within the gypsum quarry, a proposal was advanced to create an open-air geo-paleontological museum at Brisighella (Vai, 2007). Between 2001-2004, the first preservation activities at the site were undertaken thanks to an agreement between the Regional Administration (Regione Emilia-Romagna) and the Town Administration (Comune di Brisighella), and an open-air museum of the quarry area was realized in 2005-2006. A geo-park with a 14.5 hectare environmental refuge was soon created for a variety of didactic activities, and opened to the general public in 2007 (Sami, 2007a, b).

In this paper we report on the unpublished fossil remains of a tridactyl horse (*Hippotherium*) from the Monticino gypsum quarry. This taxon, represented by limited fossil material, has not been yet formally described, although its recovery dates back to the time of the Brisighella fauna’s discovery (De Giuli et al., 1988). The identification of this sample has important biochronologic and biogeographic implications. We also provide a discussion of the significance of the hipparion record in the Messinian of Italy.

GEOLOGICAL SETTING

The exposed succession within the Monticino gypsum quarry (Fig. 1) is composed, at the base, of a series of tilted gypsum layers with interbedded clays of the early Messinian Gessooso-Solfifera Formation. The gypsum was slightly eroded and subjected to a karst dissolution cycle that took place following the tectonic tilting of the strata. The deposits that infill the net of fissures intersecting the gypsum and the depressions on the upper surface of the gypsum sequence consist of marly-clays, fine grained conglomerates and sand lenses derived from the Colombacci Formation (grey pelites and variegated
marly clays with whitish to yellow thin evaporitic marly limestone; latest Messinian in age). They contain partially articulated and fragmented skeletons of large mammals, and very abundant microvertebrate remains. Several fossiliferous collecting points have been identified along the Monticino gypsum quarry outcrop (Fig. 2), some of which represent successive sampling of the same fissure that were brought to light by the progress of the quarrying activity. The Gessoso-Solfifera Formation is unconformably overlain by a thin discontinuous layer of greenish to blackish clay (0 to 1 m thick) that is considered equivalent to the later depositional phases of the Colombacci Formation and is correlated with the late Messinian. The succession is capped by up to 20 m of Early Pliocene marine gray marly clays (Argille Azzurre Formation) whose base falls in the Sphaeroidinellopsis Zone, and which overlie, with apparent conformity, the Colombacci Formation. We refer the reader to Vai (1989) for a more complete discussion of the geological setting of the Romagna Apennine, and to Marabini & Vai (1989) for further details on the geology of the Monticino gypsum quarry.

MATERIALS AND METHODS

Studied Material

The described specimens from Monticino gypsum quarry are housed in the MSF, whereas the comparative sample includes material from Baccinello V3, housed at the IGF and NHMB (see acronyms below).

Institutional Acronyms

“MSF” indicates the Museo Civico di Scienze Naturali Malmerendi, Faenza, “IGF” denotes the Museo di Storia Naturale (Sezione di Geologia e Paleontologia) of the Università di Firenze, and “NHMB” refers to the Basel Naturhistorisches Museum (Switzerland).

Fossil Site Acronyms

“BRS” indicates the fossiliferous locality (=Brisighella); the number following the acronym (e.g., BRS 25) indicates the single karst fissure (Fig. 2), whereas when a second number follows (e.g., BRS 25/1) it indicates the specimen field catalogue number. “BCB V3” refers to Baccinello V3 (latest Messinian, Tuscany; Benvenuti et al., 2001; Rook et al., 2011).

Measurements

We have measured the upper and lower dentitions using standard equid measurements published by Eisenmann et al. (1988) and Bernor et al. (1997). The third metacarpal (MCIII) is too fragmentary to measure, but its general size is comparable to Hippotherium malpassii. Measurements of the Brisighella hipparion specimens are provided in Appendix, while teeth metrical comparison and species descriptive statistics are offered in Tab. 1. Measurement numbers (M1, M2, M3, etc.) refer to those published by Eisenmann et al. (1988; and rounded to 0.1 mm) for postcranium (also in Bernor et al., 1997), whereas tooth measurement numbers refer to those published by Bernor et al. (1997), Bernor & Franzen (1997) and Bernor & Harris (2003). The osteological nomenclature has been adapted from Nickel et al. (1986). Getty (1982) was also consulted for morphological identification and comparison.

![Fig. 1 - Location map (left) and outline of the geological section outcropping in the Monticino gypsum quarry (center), with formal geological units (Formations) and chronologic setting of the exposed sediments (right). The fossils vertebrates of the Monticino gypsum quarry faunal assemblages are found in the Colombacci Fmt., the deposition of which is tightly placed in time by the constraints of the geological setting. The Colombacci Fmt. is deposited on the karstic surface of the Messinian gypsum (thereafter the infra-Messinian tectonic phase that affected the Gessoso-solfifera Fmt.), and is capped as an angular conformity by the earliest Pliocene marine clays of the Argille Azzurre Fmt. (Zanclean). Modified after Marabini & Vai (1989).](image1)

![Fig. 2 - Scheme of the fossil collecting sites within the Monticino gypsum quarry outcrop. Sites that yielded Hippotherium are highlighted by circled numbers on a coloured background (after a sketch by M. Sami, modified from Rook & Delfino, 2007).](image2)
TABLE 1 - \textit{Hippotherium} P4 and M3, (see Appendix for metrical variables explanation) from Monticino gypsum quarry compared to descriptive statistics of \textit{Hippotherium malpassii} from type locality (Baccinello V3).

<table>
<thead>
<tr>
<th>Site</th>
<th>BRS</th>
<th>H. malpassii from Baccinello V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4 MSF119</td>
<td>23.0</td>
<td>23.6</td>
</tr>
<tr>
<td>MSF119</td>
<td>23.0</td>
<td>23.6</td>
</tr>
<tr>
<td>MSF120</td>
<td>23.0</td>
<td>23.6</td>
</tr>
<tr>
<td>M3</td>
<td>22.7</td>
<td>21.5</td>
</tr>
<tr>
<td>M4</td>
<td>20.8</td>
<td>20.3</td>
</tr>
<tr>
<td>M5</td>
<td>49.1</td>
<td>(47.0)</td>
</tr>
<tr>
<td>M10</td>
<td>6.4</td>
<td>6.0</td>
</tr>
<tr>
<td>M11</td>
<td>3.6</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Tab. 1 - \textit{Hippotherium} P4 and M3, (see Appendix for metrical variables explanation) from Monticino gypsum quarry compared to descriptive statistics of \textit{Hippotherium malpassii} from type locality (Baccinello V3).

Taxonomic remarks

The genus nomen \textit{Hipparion} has been used in a variety of ways by different authors. Here we follow the systematics recently provided by Bernor et al. (1996, 1997, 2011) for hipparionine horse superspecific taxa.

SYSTEMATIC PALEONTOLOGY

Suborder \textit{Hippomorpha} Wood, 1937
Family \textit{Equidae} Hay, 1902
Subfamily \textit{Equoidea} Steinmann & Doderlein, 1890
Tribe \textit{Hipparionini} Quinn, 1955

Genus \textit{Hippotherium} Kaup, 1832

\textit{Hippotherium malpassii} Bernor, Kaiser, Nelson & Rook, 2011 (Figs 3-5)

1988 \textit{Hipparion} sp. De Giuli et al., p. 68.
2004 \textit{Hipparion} sp. Rook & Delfino, p. 194.

Material examined - The Monticino gypsum quarry \textit{Hippotherium} sample comprises five specimens: MSF119, left P4 (Fig. 3a); MFS120, left P4 (Fig. 3b); BRS 15/1, upper molar; MSF122, left M3 (Fig. 4); MSF121, fragmentary left Metacarpal III (Fig. 5).

Site - All the described material has been collected from sites within the Monticino gypsum quarry, near Brisighella (RA), specifically from three (possibly five) single fissures: BRS 1 (MSF119), BRS 15 (BRS15/1), and BRS 25 (MSF122), while two erratic specimens (MSF120 and MSF121) possibly come from fissures BRS 3 and BRS 5 (Fig. 2).

Description - The Monticino gypsum quarry hipparion sample includes two very similar left P4’s, MSF119 (crown height = 49.1 mm) and MSF122 (crown height = 47.0 mm), that are in early middle wear (Fig. 3). Both specimens exhibit the following salient features: pre- and postfossettes have complex mesial and distal borders, but in particular the distal border of the prefossette; they have a very large, single pli; they have lenticular shaped protocones; the protocone is placed well lingual of the hypocone; the hypoglyph is deeply incised; the parastyle and mesostyle are narrow loops. The plications of the pre- and postfossettes are not as complex as some of the Baccinello sample, but this may be due to their relatively early stage of wear. Both of these teeth have paracone labial enamel borders that are high and round and equal to score #2 of Mihlbacher et al. (2011) and Wolf et al. (2012), which has the effect of producing a deep-wide groove across the mesostyle-protocone portion of the crown. As such, it may be inferred that this horse had a low abrasive diet (= large browse component) and was likely a mixed-feeder at the browsing end of the browser-grazer spectrum.

The lower molar, MSF122 (Fig. 4), is a left M3 with a crown height of 32.3 mm. This specimen is in middle adult wear and has the following salient characters: the metaconid and metastylid are round; pre- and postflexids are labiolingually compressed and have simple margins; linguaflexid has a deep U-shaped morphology; ectoflexid is deep, fully penetrating the metaconid-metastylid junction; protoconid and metaconid have rounded margins; there is no evidence of an ectostylid or a pli caballinid; protoconid raises only about 23 mm from the base of the crown and is pointed at its tip.

There is a fragmentary metacarpal III (Fig. 5) that includes a portion of the proximal end and the fragmentary anterior two-thirds of the shaft. The specimen is too fragmentary to measure but, in general, would appear to have dimensions and proportions similar to the Baccinello sample of \textit{Hippotherium malpassii} (see Appendix).

As an assemblage, this would appear to be material of a single species of hipparionine horse. The referral to \textit{Hippotherium malpassii} would appear to be the best one possible. It is the size of \textit{Hippotherium malpassii} type material (Tab. 1; Fig. 6) and has a constellation of morphological features that best fit this taxon: there is no ectostylid or pli caballinid typical of Late Miocene - early Pliocene \textit{Eurygnathohippus}; neither the metaconid nor metastylid is pointed as is often the case in \textit{Eurygnathohippus}; it is neither very large as in \textit{Sivalhippus} nor very small as in \textit{Cremohipparion}; the MCIII does not have either massive proportions as is often seen in \textit{Hipparion} or \textit{Cremohipparion}. In sum, the Brisighella hipparion is best referred to \textit{Hippotherium malpassii} recently described from Baccinello (Bernor et al., 2011).
CONCLUSIONS

The Monticino gypsum quarry (Brisighella) karst fissure fillings complex yielded very few horse remains documented from five collecting sites (BRS 1, BRS 3, BRS 5, BRS 15, BRS 25), described herein for the first time. On the basis of morphological and morphometric comparisons we attribute the Brisighella sample to *Hippotherium malpassii*, a species recently described from the Late Miocene (Messinian) of Baccinello V3 in southern Tuscany (Bernor et al., 2011).

The Italian Late Miocene *Hippotherium* record, although relatively poor, contributes to our knowledge of the peculiar paleobiogeographic evolution of the Italian Peninsula. During Late Turolian (Late Miocene, MN12 time equivalent), no equid (nor any perissodactyls) are known in Italy either from the so-called V2 faunal assemblages of the Tusco-Sardinian bioprovince (Monte Bamboli in Tuscany and Fiume Santo in Sardinia; Rook et al., 1999, 2006; Bernor et al., 2001; Chesi et al., 2009) or from the faunas of the Abruzzi Apulian bioprovince (Abbazzi et al., 1996; Rook et al., 2006).

The faunal turnover that characterized the continental peninsular Italy during the latest Miocene led to the extinction of all taxa typical of the Tusco-Sardinian area and was characterized by the dispersal of a faunas composed by continental European taxa, characterizing the latest Miocene Italian mammal assemblages, along the northern Apennines, from Piedmont (Ciabot Cagna,
Investigations by Verduno and Moncucco; Cavallo et al., 1993; Angelone et al., 2011; Colombero & Pavia, 2013) to Romagna (Brisighella, this paper) and southern Tuscany (Borro Strolla, Baccinello V3, etc.; Rook et al., 2006; Abbazzi et al., 2008). Perissodactyla were part of this renewed fauna, including tapirs (Rook & Rustioni, 1991), rhinos (Hürzeler & Engesser, 1976; De Giuli et al., 1998) and hipparions (Bernor et al., 2011; this paper). The MN13 record of the Hippotherium record in Italy is the youngest known for this lineage in Eurasia.

In the light of the renewed interest in the Italian Hippotherium record (Bernor et al., 2011; this paper), a revision of the hipparion sample from Casino - only in part figured by Forsyth Major (1875, 1877) and by Pirlot (1956), and generally referred to as part of the “Hipparion gracile group” (among others Alberdi, 1986; Forsten, 2002) - would be most welcome, given its possible identification as representing a form close to the species Hippotherium malpassii.

Fig. 5 - Left metacarpal III of Hippotherium malpassii from Monticino gypsum quarry (Brisighella). MSF121 in cranial (a), caudal (b), proximal (c), lateral (d), and medial (e) views. Scale bar = 5 cm.

Fig. 6 - Bivariate plot of P4 measurements. Protocone width (M11) is plotted versus protocone length (M10). BRS specimens (asterisks) are compared with a sample of Late Miocene Old World hipparions: Baccinello V3, Italy (open triangle); Gaiselberg, Austria (solid star); Höwenegg, Germany (cross circled); Sinap, Turkey (cross boxed); Baltavar, Hungary (diamond). Comparative data derived from Bernor et al. (1997, 2011).
ACKNOWLEDGMENTS

We wish to thank Tonino Bencicetti from Zattaglia for the patient and careful activity on the Monticino fossiliferous locality, as well as Gian Paolo Costa, and Marco Sami (Faenza) for constructive discussions. Finally we would like to acknowledge the Cultural Heritage service of the Town Administration for facilitating access to fossil material in the collections of the Faenza Museum. This contribution is part of a broader research program on Late Neogene vertebrate evolution developed at the University of Florence (coordinator L.R.). We would like to acknowledge financial support for his research from the National Science Foundation: EAR0125009, EAR1131715 (to RLB) and BCS-0521893 (grant made to F.C. Howell and T.D. White; RHOI, University of California at Berkeley). Thanks are extended to M. Delfino, D.M. Alba and an anonymous reviewer for their constructive comments, which greatly ameliorated this short paper.

REFERENCES

Manuscript received 5 July 2012

Revised manuscript accepted 2 August 2013

Published online 30 October 2013

Editor Massimo Delfino
Measurements of *Hippotherium* from Monticino gypsum quarry, compared with *Hippotherium* sample from Baccinello V3 (approximate measurements between parentheses)

Upper cheek teeth

| Specimen # | Site | Species | tooth | side | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 |
|------------|------|---------|-------|------|----|----|----|----|----|----|----|----|-----|-----|
| MSF 119 | BRS | *H. malpassii* | P4 | L | 23.0 | 19.8 | 22.7 | 20.8 | 49.1 | 2 | 6 | 5 | 1 | 6.4 | 3.6 |
| MSF 120 | BRS | *H. malpassii* | P4 | L | 23.6 | 19.7 | 21.5 | 20.3 | (47.0) | 2 | 6 | 4 | 1 | 6.0 | 4.1 |

| Specimen | Site | Species | tooth | side | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 |
|-----------|------|---------|-------|------|----|----|----|----|----|----|----|----|-----|-----|
| IGF 9400V | BCB V3 | *H. malpassii* | P4 | L | 24.1 | 20.5 | 23.7 | 24.4 | 29.8 | 3 | 10 | 7 | 1 | 5.3 | 4.2 |
| IGF 9406V | BCB V3 | *H. malpassii* | P4 | L | 21.7 | 19.7 | 22.2 | 22.9 | 23.3 | 7 | 11 | 9 | 4 | 6.9 | 5.3 |
| IGF 9408V | BCB V3 | *H. malpassii* | P4 | R | 23.5 | 19.4 | 22.7 | 24.5 | 31.5 | 6 | 8 | 9 | 5 | 6.6 | 4.0 |
| IGF 9413V | BCB V3 | *H. malpassii* | P4 | R | 25.3 | 23.1 | 25.1 | 26.2 | 27.4 | 10 | 14 | 1 | 7.2 | 5.6 |
| IGF 5286V | BCB V3 | *H. malpassii* | P4 | L | 27.8 | - | 20.9 | - | - | 2 | 2 | 3 | - | 4.5 | 4.0 |
| NHMBJH126F | BCB V3 | *H. malpassii* | P4 | R | 27.6 | 23.4 | 21.9 | - | 42.4 | 1 | 6 | 4 | - | 4.2 | 4.8 |
| NHMBJH134 | BCB V3 | *H. malpassii* | P4 | L | 27.7 | 23.6 | 22.1 | 25.3 | 44.3 | 1 | 6 | 4 | - | 4.0 | 3.6 |
| NHMBJH229E | BCB V3 | *H. malpassii* | P4 | L | 25.1 | 22.2 | 21.9 | 22.7 | 48.1 | 7 | 10 | 2 | 1 | 7.0 | 3.4 |

Lower cheek teeth

| Specimen # | Site | Species | tooth | side | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 |
|------------|------|---------|-------|------|----|----|----|----|----|----|----|----|-----|
| MSF122 | BRS | *H. malpassii* | M2 | L | 20.8 | 19.5 | 13.8 | 6.7 | 7.7 | 13.6 | 11.9 | 11.4 | 10.3 | 32.3 |
| NHMBJH160E | BCB V3 | *H. aff. malpassii* | M2 | L | 24.3 | 21.9 | 12.8 | 8.4 | 9.0 | 8.8 | 12.8 | 9.6 | 8.8 | 45.7 |
| NHMBJH160M | BCB V3 | *H. aff. malpassii* | M2 | R | 25.1 | 21.8 | 12.9 | 7.4 | 8.7 | 8.2 | 13.2 | 9.5 | 9.6 | 44.6 |
| IGF9398V | BCB V3 | *Hippotherium* sp. | M2 | L | 20.7 | - | 12.0 | 6.8 | 6.6 | - | 9.3 | 10.0 | - |
| NHMBJH122A | BCB V3 | *Hippotherium* sp. | M2 | L | 21.1 | - | 12.0 | 5.6 | 8.5 | 10.8 | - | 11.1 | 10.7 |
| NHMBJH122B | BCB V3 | *Hippotherium* sp. | M2 | R | 21.0 | - | 12.0 | 4.7 | 6.4 | 11.3 | - | 11.2 | 9.8 |
| NHMBJH125C | BCB V3 | *Hippotherium* sp. | M2 | L | 22.9 | 22.4 | 11.3 | 7.1 | 7.8 | 13.2 | 12.9 | 11.9 | 10.2 | 38.7 |
| NHMBJH137 | BCB V3 | *Hippotherium* sp. | M2 | L | 24.4 | 19.7 | 13.4 | 8.4 | 10.6 | 12.8 | 13.3 | 10.7 | 10.5 | 36.6 |
| NHMBJH176A | BCB V3 | *Hippotherium* sp. | M2 | L | 21.9 | 20.2 | 12.4 | 6.3 | 9.3 | 14.9 | 13.1 | 12.1 | 11.7 | 25.6 |
| NHMBJH207 | BCB V3 | *Hippotherium* sp. | M2 | R | - | - | 11.8 | 6.1 | 7.5 | - | - | 11.1 | - | 27.3 |
| NHMBJH216 | BCB V3 | *Hippotherium* sp. | M2 | L | 21.3 | 20.9 | 11.4 | 6.7 | 9.3 | 11.0 | 12.5 | 9.7 | 9.0 | 32.4 |

Metacarpal III

<table>
<thead>
<tr>
<th>Spec.</th>
<th>Site</th>
<th>Species</th>
<th>side</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
<th>M9</th>
<th>M10</th>
<th>M11</th>
<th>M12</th>
<th>M13</th>
<th>M14</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF121</td>
<td>BRS</td>
<td>H. malpassii</td>
<td>L</td>
<td>-</td>
<td>-</td>
<td>26.9</td>
<td>22.9</td>
<td>(37.2)</td>
<td>(27.8)</td>
<td>(30.0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IGF8192V</td>
<td>V3</td>
<td>H. malpassii</td>
<td>L</td>
<td>214.3</td>
<td>206.2</td>
<td>27.2</td>
<td>21.5</td>
<td>39.3</td>
<td>25.1</td>
<td>30.6</td>
<td>14.4</td>
<td>6.1</td>
<td>37.5</td>
<td>35.0</td>
<td>27.9</td>
<td>24.2</td>
<td>25.6</td>
</tr>
<tr>
<td>IGF9397V</td>
<td>V3</td>
<td>H. malpassii</td>
<td>L</td>
<td>216.2</td>
<td>209.2</td>
<td>27.8</td>
<td>22.5</td>
<td>42.1</td>
<td>29.9</td>
<td>36.6</td>
<td>12.9</td>
<td>7.4</td>
<td>40.0</td>
<td>38.2</td>
<td>30.3</td>
<td>25.7</td>
<td>26.6</td>
</tr>
<tr>
<td>NHMBJH144</td>
<td>V3</td>
<td>H. sp.</td>
<td>-</td>
<td>-</td>
<td>29.9</td>
<td>23.4</td>
<td>-</td>
</tr>
</tbody>
</table>